The dose distribution of medium energy electron boosts to the laryngectomy stoma

نویسندگان

  • Ellen D. Yorke
  • Alireza Kassaee
  • Todd Doyle
  • Laurie A. Loevner
  • David I. Rosenthal
چکیده

An en face, medium energy electron boost of approximately 10 Gy is often given to stomal and peristomal tissues. Because the boost is considered a simple treatment, CT-based treatment planning is rarely used. Further, the results of such a plan might be inaccurate, as the complex dose distribution surrounding the stoma air cavity is poorly modeled by many treatment planning systems. We constructed three phantoms-two with a central vertical cavity to mimic the size and shape of the stoma and proximal trachea and one with a cavity inclined at 45 degrees to the horizontal to better simulate anatomy. These were used to investigate the dose distribution surrounding the stoma. In all cases, the entrance to the stoma opening was centered in a field defined by a 7-cm circular cutout and the phantom was irradiated at a source-surface distance (SSD) of 100 cm with either vertically incident 9- or 12-MeV electrons. Film measurements were made at a range of depths below and lateral to the cavity. For the vertical cavity phantoms, diode measurements were performed and isodose plans using CT scans of the phantoms were generated on a modern treatment planning system. For these two phantoms, the combined effects of lateral scatter from surrounding material and reduced equivalent thickness for electrons which pass directly through the cavity increases the dose within a centimeter of the bottom of cavity by as much as 50% for 9 MeV and 70% for 12 MeV. In material at the shallower ("superior") end of the inclined cavity, a 40-50% overdose was noted. The dose increase is geometry dependent and is not predicted by the available treatment planning system. The potential of such a dose increase to affect normal tissues such as the neopharynx should be considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron Beam Dose Distribution in the Presence of Non-Uniform Magnetic Field

Introduction Magnetic fields are capable of altering the trajectory of electron beams andcan be used in radiation therapy.Theaim of this study was to produce regions with dose enhancement and reduction in the medium. Materials and Methods The NdFeB permanent magnets were arranged on the electron applicator in several configurations. Then, after the passage of the electron beams (9 and 15 MeV Va...

متن کامل

Investigating the Effects of Cut-Out Shield on High-Energy Electron Fields Using MAGIC Normoxic Polymer Gel

Introduction The use of cut-outs in electron applicators make changes on output, isodose, and percentage depth dose (PDD) curves. These changes and electron beam dose distribution in the form of three-dimensional (3D) can be measured by gel dosimeters. Materials and Methods Dosimetry was performed with and without a square shield (6×6 cm2 field). The energies were 4, 9, and 16 MeV and phantom w...

متن کامل

Comparing experimental assessment of the peripheral dose outside the applicator in electron beams of ELEKTA with Treatment planning system

Introduction: The use of electrons in the electron therapy to destroy tumoral tissue is dedicated significant contribution of different methods of radiation therapy. Scattered radiation due to exited electrons of the applicator affect the dose out of the field in the patient's normal tissue. The aim of this study is to determine the peripheral dose outside the applicator in the...

متن کامل

Effect of Tissue Composition on Dose Distribution in Electron Beam Radiotherapy

Objective: The aim of this study is to evaluate the effect of tissue composition on dose distribution in electron beam radiotherapy.Methods: A Siemens Primus linear accelerator and a phantom were simulated using MCNPX Monte Carlo code. In a homogeneous cylindrical phantom, six types of soft tissue and three types of tissue-equivalent materials were investigated. The tissues included muscle (ske...

متن کامل

Benchmarking of Siemens Linac in Electron Modes: 8-14 MeV Electron Beams

Introduction: Radiation therapy using electron beams is a promising method due to its physical dose distribution. Monte Carlo (MC) code is the best and most accurate technique for forespeaking the distribution of dose in radiation treatment of patients.Materials and Methods: We report an MC simulation of a linac head and depth dose on central axis, along with profile calculations. The purpose o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2001